metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.2D20, (C2×D20)⋊4C4, C23⋊C4⋊2D5, (C4×Dic5)⋊2C4, (C2×D4).4D10, C5⋊3(C42⋊C4), C20⋊D4.1C2, C23⋊Dic5⋊1C2, (D4×C10).4C22, (C22×C10).11D4, C23.4(C5⋊D4), C10.31(C23⋊C4), C22.11(D10⋊C4), C2.11(C23.1D10), (C2×C4).2(C4×D5), (C5×C23⋊C4)⋊2C2, (C2×C20).2(C2×C4), (C2×C10).68(C22⋊C4), SmallGroup(320,32)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×D4 — C23⋊C4 |
Generators and relations for C23.2D20
G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=a, dad-1=ab=ba, ac=ca, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=ad-1 >
Subgroups: 526 in 86 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C2×D4, C2×D4, Dic5, C20, D10, C2×C10, C2×C10, C23⋊C4, C23⋊C4, C4⋊1D4, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C42⋊C4, C4×Dic5, C23.D5, C5×C22⋊C4, C2×D20, C2×C5⋊D4, D4×C10, C23⋊Dic5, C5×C23⋊C4, C20⋊D4, C23.2D20
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, D10, C23⋊C4, C4×D5, D20, C5⋊D4, C42⋊C4, D10⋊C4, C23.1D10, C23.2D20
(1 27)(2 28)(3 39)(4 40)(5 31)(6 32)(7 23)(8 24)(9 35)(10 36)(11 22)(12 33)(13 34)(14 25)(15 26)(16 37)(17 38)(18 29)(19 30)(20 21)
(2 17)(4 19)(6 11)(8 13)(10 15)(22 32)(24 34)(26 36)(28 38)(30 40)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 30 27 19)(2 18 28 29)(3 38 39 17)(4 16 40 37)(5 26 31 15)(6 14 32 25)(7 34 23 13)(8 12 24 33)(9 22 35 11)(10 20 36 21)
G:=sub<Sym(40)| (1,27)(2,28)(3,39)(4,40)(5,31)(6,32)(7,23)(8,24)(9,35)(10,36)(11,22)(12,33)(13,34)(14,25)(15,26)(16,37)(17,38)(18,29)(19,30)(20,21), (2,17)(4,19)(6,11)(8,13)(10,15)(22,32)(24,34)(26,36)(28,38)(30,40), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,30,27,19)(2,18,28,29)(3,38,39,17)(4,16,40,37)(5,26,31,15)(6,14,32,25)(7,34,23,13)(8,12,24,33)(9,22,35,11)(10,20,36,21)>;
G:=Group( (1,27)(2,28)(3,39)(4,40)(5,31)(6,32)(7,23)(8,24)(9,35)(10,36)(11,22)(12,33)(13,34)(14,25)(15,26)(16,37)(17,38)(18,29)(19,30)(20,21), (2,17)(4,19)(6,11)(8,13)(10,15)(22,32)(24,34)(26,36)(28,38)(30,40), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,30,27,19)(2,18,28,29)(3,38,39,17)(4,16,40,37)(5,26,31,15)(6,14,32,25)(7,34,23,13)(8,12,24,33)(9,22,35,11)(10,20,36,21) );
G=PermutationGroup([[(1,27),(2,28),(3,39),(4,40),(5,31),(6,32),(7,23),(8,24),(9,35),(10,36),(11,22),(12,33),(13,34),(14,25),(15,26),(16,37),(17,38),(18,29),(19,30),(20,21)], [(2,17),(4,19),(6,11),(8,13),(10,15),(22,32),(24,34),(26,36),(28,38),(30,40)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,30,27,19),(2,18,28,29),(3,38,39,17),(4,16,40,37),(5,26,31,15),(6,14,32,25),(7,34,23,13),(8,12,24,33),(9,22,35,11),(10,20,36,21)]])
35 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5A | 5B | 10A | 10B | 10C | ··· | 10H | 10I | 10J | 20A | ··· | 20J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | 10 | 10 | ··· | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 4 | 4 | 40 | 4 | 8 | 8 | 20 | 20 | 40 | 40 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | ··· | 8 |
35 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D5 | D10 | C4×D5 | D20 | C5⋊D4 | C23⋊C4 | C42⋊C4 | C23.1D10 | C23.2D20 |
kernel | C23.2D20 | C23⋊Dic5 | C5×C23⋊C4 | C20⋊D4 | C4×Dic5 | C2×D20 | C22×C10 | C23⋊C4 | C2×D4 | C2×C4 | C23 | C23 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 1 | 2 | 4 | 2 |
Matrix representation of C23.2D20 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 32 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 18 | 40 | 0 | 1 |
0 | 0 | 18 | 40 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 23 | 0 | 40 | 0 |
0 | 0 | 23 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 32 | 0 | 0 | 0 | 0 |
9 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 40 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 18 | 40 | 1 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 9 | 0 |
0 | 0 | 23 | 0 | 40 | 40 |
0 | 0 | 18 | 40 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,18,18,0,0,32,1,40,40,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,23,23,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,9,0,0,0,0,32,22,0,0,0,0,0,0,40,0,0,18,0,0,0,0,0,40,0,0,9,40,1,1,0,0,0,1,0,0],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,40,23,18,0,0,0,0,0,40,0,0,0,9,40,1,1,0,0,0,40,0,0] >;
C23.2D20 in GAP, Magma, Sage, TeX
C_2^3._2D_{20}
% in TeX
G:=Group("C2^3.2D20");
// GroupNames label
G:=SmallGroup(320,32);
// by ID
G=gap.SmallGroup(320,32);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,422,1123,794,297,136,851,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=a,d*a*d^-1=a*b=b*a,a*c=c*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*d^-1>;
// generators/relations